In a subsequent publication, a more detailed model for $LiF-BeF₂$ solutions will be compared with the present data, a model in which polymeric anions $Be_aF_b^{(b-2a)}$ are assumed. These will extend in composition and structure from the monomer $BeF₄²$ -the principal species when X_{BeF_2} is less than 0.33—through increasingly polymeric anions as $X_{B\circ F_2}$ increases, to very large networks or chain structures as pure $BeF₂$ is approached. For the present it may be useful to point out that since in such a model $Li⁺$ is the only

cation present in solution, its ion fraction is unity and its activity might be approximated as unity. In this case the activity of LiF given by the present results (Table II) should approximate the activity of F ⁻ ion

$$
a_{\text{LiF}} = (a_{\text{Li}})(a_{\text{F}} -) \sim a_{\text{F}}.
$$

The rapid drop in γ_{Lif} (Figure 7a)—*i.e.*, in a_{LiF} —as $BeF₂$ is added to LiF thus may be viewed as corresponding to the depletion of free F⁻ ions as $Be_aF_b{}^{(b-2a)}$ polymers are formed.

Notes

CONTRIBUTION FROM THE MORRISTOWN LABORATORY, INDUSTRIAL CHEXICALS DIVISION, ALLIED CHEMICAL CORPORATION, MORRISTOWN, NEW JERSEY 07960

N,N-Difluoro-O-fluorocarbonylhydroxylamine, $FC(O)$ ON $F₂$, and N,N-Difluoro-0- **trifluoromethylhydroxylamine,** $CF₃ONF₂$

BY W. B. FOX, G. FRANZ, **AKD** L. R. AKDERSON

Received August 28, 1967

Recent publications have described the synthesis of the novel N-fluorinated hydroxylamines FSO_2ONF_2 ¹ $SF₅ONF₂^{2,3}$ and $CF₃ONF₂^{3,4}$ through reactions of tetrafluorohydrazine with $(FSO_2O)_2$, SF_5OF , and CF_3 -OF, respectively. Presumably these reactions proceed *via* simple coupling of difluoramino radicals with the intermediate oxy radicals (FSO₂O \cdot , SF₅O \cdot , and CF₃O \cdot) generated from the substrates. $1-4$

In the light of these reports and our recent esr studies of the oxy radicals generated by homolytic cleavage of the peroxides $FC(0)OOC(0)F⁵$ and $CF₃OOCF₃$ ⁶ it was of interest to examine the reactions of these peroxides with tetrafluorohydrazine. The anticipated synthesis of the corresponding N-Auoro-0-substituted hydroxylamines is described below.

Experimental Section

Materials.-Bis(fluorocarbony1)peroxide was prepared by a published method⁷ and fractionated on the vacuum line through traps at -111 , -130 , and -196° . The peroxide collected at -130° was used after its identity was confirmed by infrared and mass spectral analysis. Bis(trifluoromethy1) peroxide from Peninsular ChemResearch and tetrafluorohydrazine from E. I. du Pont de Nemours and Co. were sufficiently pure to be used without further treatment.

Preparation of $\mathtt{FC}(\mathtt{O})\mathtt{ONF}_2$.--The most satisfactory procedure for preparing $FC(O)ONF₂$ is illustrated by the following example. An evacuated 200-ml Pyrex bulb was charged with 150 mm of gaseous N_2F_4 (1.60 mmol) at 25° , and an equal amount of $FC(O)$ - $OOC(O)$ F was then added from a high-pressure reservoir. Within 1 min after the addition, a rapid reaction occurred as evidenced by formation of a white "mist" in the reactor. The bulb was then cooled to -78° and volatile products were pumped off through traps at -111 and -196° . The product $\text{FC}(O) \text{ONF}_2$ was collected at -111° and a mixture of NF₃, CO₂, COF₂, and SiF_4 was found in the -196° trap. The FC(O)ONF₂ fraction (0.40 mmol) was contaminated with small amounts of *30%* and unused peroxide from which it could be separated by fractional codistillation.⁸ *Anal.* Calcd for $FC(0)$ ONF₂: N, 12.2; F, **49.5.** Found: K, 11.8; F, 48.7. In nearly a dozen runs conducted in this fashion, yields of $FC(O)$ ONF₂ ranged from 10 to 15% .

An unusual requirement of these runs was that a fresh, unused reaction bulb was required for each experiment to ensure reasonable yields of the desired product, Subsequent experiments conducted in bulbs after their initial use produced SF3, COF2, $NO₂$, and oxygen, but no detectable amount of $FC(O)ONF₂$. *So* manner of rinsing or cleaning restored the apparent catalytic activity of the Pyres reactor malls. With one exception, experiments conducted in vessels of quartz, nickel, Monel, and stainless steel were unrewarding and led to mixtures of COF_2 , NF_3 , *SOa,* and noncondensable material. In one case, equimolar amounts of N_2F_4 and $FC(O)OOC(O)F$ in a reactor of Type 316 stainless steel produced a quantitative yield of $FC(0)$ ONF₂, but this result could not be reproduced in numerous subsequent trials.

 $\bf{Preparation~of~CF_{3}ONF_{2}.^{9}-The~reactor~used~was~a~30-ml~Hoke}$ cylinder (316 stainless steel) fitted with a 3238 Hoke valve. Tetrafluorohydrazine (2.5 mmol) and bis(trifluoromethy1) pcroxide (2.4 mmol) were combined in the tube and heated to 130° for 10 days. Vacuum-line fractionation of products through traps at -130 , -142 , and -196° afforded unused $CF_3O OCF_3$ (1.7 mmol) in the first two traps. A mixture of $CF₃ONF₂$, N_2F_4 , NF₃ (trace), and COF₂ in the third trap was refractionated through -158 and -196° traps which isolated a $CF_{3}ONF_{2}$ -COF₂ mixture at -158° and N₂F₄ (2.2 mmol, contaminated with minor amounts of COF₂, CF_3ONF_2 , and NF_3) at -196° . Pure $CF₃ONF₂³$ (0.5 mmol) was recovered from the -158° fraction after removing the $COF₂$ (0.5 mmol) by absorption on finely ground CsF. Based on CF_3OOCF_3 consumed (0.7 mmol), the pure CF30NFz recovered (0.5 mmol) represents a 36% yield $(83\%$ based on N₂F₄ consumed). No significant reaction between CF_3OOCF_3 and N_2F_4 occurred when mixtures were heated

⁽¹⁾ M. Lustig and G. H. Cady, *Inorg. Chem.*, 2, 388 (1963).

⁽²⁾ J. Ruff, *ibid.,* **4,** 1788 (1965).

⁽³⁾ W. H. Hale and S. M. Williamson, *ibid.,* **4,** 1342 (1965).

⁽⁴⁾ J. M. Shreeve and **L.** C. Duncan, *ibid.,* **4,** 1516 (1965).

⁽⁵⁾ W. B. Fox and G. Franz, *ibid.,* **6,** 946 (1966).

⁽⁶⁾ i\i. Vanderkooi and **W.** B. **Fox,** to be published.

⁽⁷⁾ (a) A. J. Arvia, P. J. Aymonino, C. Waldow, and H. J. Schumacher-, *Anpew,. Chem.,* **72,** 169 (1960); (b) **A.** J. Ai-via, P. J. Aymonino, and H. J. Schumacher, *Z. Anovg. Allgem. Chenz.,* **316, 327** (1962).

⁽⁸⁾ G. H. Cady and D. P. Siegwarth, *Anal. Chenz.,* **31,** 618 (1959).

⁽⁹⁾ Following completion of this work, a similar preparation of $CF₃ONF₂$ was reported by *G.* N. Sausen, *G.* S. Patent 3,214,465 (Oct 26, 1965).

to 90' for 16 hr or 140' for 4 hr. Reactions conducted in Pyrex vessels and subjected to ultraviolet irradiation by a high-pressure mercury lamp were attended by extensive attack on the glass and formation of NO_2 , NF_3 , COF_2 , SiF_4 , CO_2 , and CF_4 . No evidence for CF_3ONF_2 was found in these studies.

Nmr and Infrared Spectra.-The infrared spectrum of FC(O)-ONFz was obtained with a Beckman IR-8 spectrophotometer. The F¹⁹ nmr spectrum of FC(O)ONF₂ as a 10-20% solution in SF₆ was recorded at -78° with a Varian spectrometer, Model V-4302. Chemical shifts are reported in ϕ units, here defined as ppm relative to CFCl₃.

Mass Spectrum.-A Consolidated Electrodynamics Corp. Model 21-202 spectrometer with an ionization potential of 70 V was used to obtain the fragmentation pattern of $FC(O)$ ONF₂. The mass number, species, and relative abundance (in parentheses) of the most prominent peaks are as follows: 28, CO+ (36.7); 30, NO⁺ (44.0); 33, NF⁺ (30.8); 44, CO₂⁺ (56.6); 47, FCO⁺ (100.0); 49, NOF⁺ (0.4); 52, NF₂⁺ (58.3); 63, FCO₂⁺ (0.3) ; 68, ONF₂⁺ (0.3) ; 77, FCO₂N⁺ (0.2) ; 96, FCO₂NF⁺ (0.1) . No peaks at higher mass numbers were observed.

Results **and** Discussion

The formation of the N,N-difluorohydroxylamine products in this study can be represented by
 $CF_3OOCF_3 + N_4F_4 \longrightarrow 2CF_3ONF_2$ (1)

$$
\begin{array}{lll}\n\text{CF}_3 \text{OOCF}_3 + \text{N}_2 \text{F}_4 \longrightarrow 2\text{CF}_3 \text{ONF}_2 & (1) \\
\text{FC(O)OOC(O)F} + \text{N}_2 \text{F}_4 \longrightarrow 2\text{FC(O)ONF}_2 & (2)\n\end{array}
$$

$$
FC(O)OOC(O)F + N1F4 \longrightarrow 2FC(O)ONF2 (2)
$$

Both reactions probably involve primary fission of the peroxide *0-0* bonds and subsequent addition of the resultant oxy radicals to the NF_2 . radicals known to exist in equilibrium with N_2F_4 .¹⁰ The much greater reactivity of $FC(O)OOC(O)F$ than of $CF₃OOCF₃$ toward N2F4 may be a manifestation of weaker *0-0* bonding in the fluorocarbonyl peroxide compared with trifluoromethyl peroxide. This would be consistent with the much lower thermal stability of $FC(O)OOC$ - $(O)F⁷$ compared with $CF₃OOCF₃$.¹¹

The synthesis of CF_3ONF_2 according to eq 1 offers some advantage over the synthesis of this material from CF_3OF and N_2F_4 ,^{3,4} since undesirable by-product formation (COF_2 , NF_3 , CF_4 , NOF) is minimized and more efficient utilization of starting materials results. The formation of $FC(O)$ ONF₂ according to eq 2 appears to be a facile process but the experimental results indicate a number of equally facile competing reactions in the system. The variations in yields of $FC(O)ONF₂$ and the erratic influences of reactor history and type are reminiscent of the irregular behavior observed in the synthesis of $S\rightarrow P_5ONF_2$.² The by-products (COF₂, $CO₂$, $O₂$, and NF₃) formed here during the synthesis of $FC(O)$ ONF₂ may have arisen partly through thermal decomposition of the peroxide, eq $3⁷$ followed by oxidation of the N₂F₄ as reported by Beach¹²
FC(O)OOC(O)F \longrightarrow COF₂ + CO₂ + ¹/₂O₂ (3)

FC(0)OOC(O)F
$$
\longrightarrow
$$
 COF₂ + CO₂ + 1/₂O₂ (3)
N₂F₄ + 1/₂O₂ \longrightarrow NOF + NF₈ (4)

$$
N_2F_4 + \frac{1}{2}O_2 \longrightarrow \text{NOF} + \text{NF}_3 \tag{4}
$$

Thermal decomposition of the desired product $FC(O)$ -
ONF₂ according to the equation
 $FC(O)$ ONF₂ \longrightarrow COF₂ + NOF (5) ONF_2 according to the equation

$$
FC(O)ONF_2 \longrightarrow COP_2 + NOF \tag{5}
$$

probably occurred to some extent during synthesis,

(10) (a) F. A. Johnson and C. B. Colburn, *J. Am. Chem.* Soc., **83,** 2400 (1960); (b) L. H. Piette, F. **A.** Johnson, K. A. Booman, and C. B. Colburn, *J. Chem. Phys.,* **36,** 1481 (1961).

- (11) R. S. Porter and G. H. Cady, *J. Am. Chem.* Soc., **79,** 5628 (1957).
- (12) L. K. Beach, *J. Inorg. Nucl. Chem.,* **26, 2033** (1964).

since isolated samples of $FC(O)$ ONF₂ which decomposed during storage or when heated formed mainly $COF₂$ and NOF (or products of the latter's attack on glass¹³). Hale and Williamson³ have observed this mode of thermal decomposition **(e.g.,** NOF elimination) for CF_3ONF_2 and SF_5ONF_2 . It is of interest that photochemical decomposition of $FC(O)ONF_2$ at -196° in the resonance cavity of an esr spectrometer produced the previously reported⁶ anisotropic doublet spectrum of the FCO₂ · radical. This indicates that photochemical decomposition of $FC(O)$ ONF₂ differs from thermal decomposition in proceeding by 0-N bond cleavage rather than C-0 rupture.

The infrared spectrum of $FC(O)$ ONF₂ in the sodium chloride region is entirely consistent with its formulation as a fluorinated hydroxylamine derivative. Very strong absorptions at 1890 and 1215 cm⁻¹ arise from C=O and C-F stretching vibrations of the FCO group.^{14,15} Strong bands at 1037 and 906 cm⁻¹ may be assigned to symmetric and asymmetric N-F stretches, respectively, in view of their similarity to such vibrations in CF_3ONF_2 (1027 and 933 cm⁻¹⁾³ and FSO_2ONF_2 $(1032 \text{ and } 913 \text{ cm}^{-1})$.¹ Bands found at 887 (s) and 870 (vs) cm⁻¹ in $FC(O)$ ONF₂ are assignable to singly bonded C —O and N —O stretches, since these modes appear at 892 and 865 cm⁻¹, respectively, in CF_{3} - ONF_2 ³ The general shape of the absorption envelope over the range $1050-850$ cm⁻¹ in the $FC(O)ONF₂$ spectrum bears a striking resemblance to that of CF_{3-} ONF_2 in this region. Bands in the $\text{FC}(O) \text{ONF}_2$ spectrum at 675 (w) and 740 (w) cm⁻¹ have not been definitely assigned, but the 740 -cm⁻¹ band may be associated with the NF_2O symmetric deformation.

Additional evidence for the proposed structure of $FC(O)$ ONF₂ may be derived from the nmr spectrum.
A broad triplet at ϕ -110 is attributable to quadrupolebroadened NF resonance of the ONF_2 group, with J_{NF} = 158 Hz. (The nmr spectrum of CF_3ONF_2 exhibits a similar NF triplet at ϕ -124⁴ with J_{NF} = 126 Hz.³) A high-field resonance at ϕ +40, assignable to C-F of the $FC(O)O$ group⁵ appeared to be a narrow, incompletely resolved triplet, the fine structure arising from coupling between the CF and NF fluorines. Since the line width of the band at half-height was around 10 Hz, it could only be estimated that $J_{\text{CF-NF}}$ was less than 10 Hz and greater than 3 Hz. This range appears reasonable, since CF_3ONF_2 has $J_{NF-CF} = 3.4 Hz⁴$ and FSO_2ONF_2 has $J_{\text{NF}-\text{CF}} = 4.6 \text{ Hz}.^1$ The area of the CF resonance was half that of the NF resonance.

N,N-Difluoro-0-Auorocarbonylhydroxylamine was found to be stable as a liquid stored in glass for weeks at -78° , but gaseous samples at room temperature generally underwent sudden decomposition after periods ranging from several minutes to several days. The compound was rapidly decomposed by moisture and mercury, the latter tendency preventing accurate gas

^{(13) 0.} **Ruff, W.** Menzel, and **W.** Neumann, Z. *Anorg. Allgem. Chem.,* **208,** 293 (1932).

⁽¹⁴⁾ J. Simons, "Fluorine Chemistry," Vol. **11,** Academic Press, New York. N. *Y.,* 1954, **p** 485.

⁽¹⁵⁾ K. Loos and R. Lord, *Specbochim. Acta,* **81,** 119 (1965).

density and molecular weight measurements. However, crude measurements with a Monel Bourdon gauge, as well as the behavior of $FC(O)$ ONF₂ during vacuum line manipulations, suggested a normal boiling point in the vicinity of 0° .

Caution! Although no explosions occurred during the course of this work, the materials are potentially hazardous and proper shielding should be used.

Acknowledgments.-The authors thank Dr. B. B. Stewart for the nmr spectra, Mr. E. McCarthy for the mass spectroscopic results, and Miss R. Juurik for the chemical analyses. This research was supported by the Advanced Research Projects Agency, Propellant Chemistry Office, and was monitored by Army Research Missile Command, Redstone Arsenal, Huntsville, Ala., under Contracts DA-30-069-ORD-2638 and DA-Ol-021-AMC-l2264(Z).

> COSTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF RAJASTHAN, JAIPUR, INDIA

Reactions of Gallium Alkoxides with Acyl Halides

BY S. R. BINDAL, P. N. KAPOOR, AND R. C. MEHROTRA

Received Febvzravy 1, 1967

Halide alkoxides of a number of elements $(e.g., Ti, '$ Zr ,² A1,³ Fe,⁴ and V⁵) have been synthesized by the reactions of their alkoxides with acyl halides. In a recent communication Mogele⁶ has reported the preparation of halide alkoxides of gallium by reactions of the type

$$
Ga(GaX_4) + 2ROH \longrightarrow XGa(OR)_2 + GaX_3 + H_2
$$

$$
GaX_3 + 2NaOR \longrightarrow XGa(OR)_2 + 2NaX
$$

where $X = Cl$ or Br and $R = CH_3$ or C_2H_5 . These monohalide derivatives were found to be insoluble in organic solvents and were assumed to be coordinatively polymeric. Dihalide monoalkoxy derivatives could not be prepared by similar reactions, since the dihalide derivatives initially formed were found to yield the monohalide derivatives. The dihalide derivatives could finally be prepared by reactions of the type

> $XGa(OR)_2 + GaX_3 \longrightarrow 2X_2GaOR$ $X_2GaR + ROH \longrightarrow X_2GaOR + RH$

where $X = Cl$ or Br and $R = CH_3$ or C_2H_5 .

1966. **(5)** R. C. Mehrotra and R. K. Mittal, *Z. AIzoi,g. Allgem. Chepn.,* **332,** 189

(1964). (6) L. Mogele, "Proceedings, Uth International Conference on Coordina-

tion Chemistry," Verlag Helvetica Chimica Acta, Basle, 1966.

INFRARED BANDS OF THE COMPOUNDS"

ТАВLЕ

⁽¹⁾ D. C. Bradley, D. C. Hancock, and W. Wardlaw, *J. Chem. Soc.*, 2773 (1952).

⁽²⁾ D. C. Bradley, F. **BI.** Halim, R. C. Mehrotra, and **W.** Wardlaw, *ibid.,* 4609 (1952). (3) **R.** C. Mehrotra and R. K. Mehrotra, *J. Izdian Chem. SOC.,* **39, 23**

^{(1962).} (4) P. P. Sharma, Ph.D. Thesis, University of Rajasthan, Jaipur, India,